Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.02.03.578756

ABSTRACT

In vitro models play a major role in studying airway physiology and disease. However, the native lungs complex tissue architecture and non-epithelial cell lineages are not preserved in these models. Ex vivo tissue models could overcome in vitro limitations, but methods for long-term maintenance of ex vivo tissue has not been established. We describe methods to culture human large airway explants, small airway explants, and precision-cut lung slices for at least 14 days. Human airway explants recapitulate genotype-specific electrophysiology, characteristic epithelial, endothelial, stromal and immune cell populations, and model viral infection after 14 days in culture. These methods also maintain mouse, rabbit, and pig tracheal explants. Notably, intact airway tissue can be cryopreserved, thawed, and used to generate explants with recovery of function 14 days post-thaw. These studies highlight the broad applications of airway tissue explants and their use as translational intermediates between in vitro and in vivo studies.


Subject(s)
Virus Diseases
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.25.477616

ABSTRACT

The emergence of SARS-CoV-2 variants that evade host immune responses has prolonged the COVID-19 pandemic. Thus, the development of an efficacious, variant-agnostic therapeutic for the treatment of early SARS-CoV-2 infection would help reduce global health and economic burdens. Visible light therapy has the potential to fill these gaps. In this study, visible blue light centered around 425 nm efficiently inactivated SARS-CoV-2 variants in cell-free suspensions and in a translationally relevant well-differentiated tissue model of the human large airway. Specifically, 425 nm light inactivated cell-free SARS-CoV-2 variants Alpha, Beta, Delta, Gamma, Lambda, and Omicron by up to 99.99% in a dose-dependent manner, while the monoclonal antibody bamlanivimab did not neutralize the Beta, Delta, and Gamma variants. Further, we observed that 425 nm light reduced virus binding to host ACE-2 receptor and limited viral entry to host cells in vitro. Further, the twice daily administration of 32 J/cm2 of 425 nm light for three days reduced infectious SARS-CoV-2 Beta and Delta variants by >99.99% in human airway models when dosing began during the early stages of infection. In more established infections, logarithmic reductions of infectious Beta and Delta titers were observed using the same dosing regimen. Finally, we demonstrated that the 425 nm dosing regimen was well-tolerated by the large airway tissue model. Our results indicate that blue light therapy has the potential to lead to a well-tolerated and variant-agnostic countermeasure against COVID-19.


Subject(s)
COVID-19
3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-500168.v1

ABSTRACT

The nose is the portal for SARS-CoV-2 infection, suggesting the nose as a target for topical antiviral therapies. Because detergents are virucidal, Johnson and Johnson’s Baby Shampoo (J&J) was tested as a topical virucidal agent in SARS-CoV-2 infected subjects. Twice daily irrigation of J&J in hypertonic saline, hypertonic saline alone, or no intervention were compared (n = 24/group). Despite demonstrated safety and robust efficacy in in vitro virucidal assays, J&J irrigations had no impact on viral titers or symptom scores in treated subjects relative to controls. Similar findings were observed administering J&J to infected cultured human airway epithelia using protocols mimicking the clinical trial regimen. Additional studies of cultured human nasal epithelia demonstrated that lack of efficacy reflected pharmacokinetic failure, with the most virucidal J&J detergent components rapidly absorbed from nasal surfaces. This study emphasizes the need to assess the pharmacokinetic characteristics of virucidal agents on airway surfaces to guide clinical trials.


Subject(s)
COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.28.317685

ABSTRACT

The D614G substitution in the S protein is most prevalent SARS-CoV-2 strain circulating globally, but its effects in viral pathogenesis and transmission remain unclear. We engineered SARS-CoV-2 variants harboring the D614G substitution with or without nanoluciferase. The D614G variant replicates more efficiency in primary human proximal airway epithelial cells and is more fit than wildtype (WT) virus in competition studies. With similar morphology to the WT virion, the D614G virus is also more sensitive to SARS-CoV-2 neutralizing antibodies. Infection of human ACE2 transgenic mice and Syrian hamsters with the WT or D614G viruses produced similar titers in respiratory tissue and pulmonary disease. However, the D614G variant exhibited significantly faster droplet transmission between hamsters than the WT virus, early after infection. Our study demonstrated the SARS-CoV2 D614G substitution enhances infectivity, replication fitness, and early transmission.


Subject(s)
Seizures , Lung Diseases
SELECTION OF CITATIONS
SEARCH DETAIL